
Introduction to

Kubernetes

Vikram
IoT Application Dev

Container orchestration

• Container orchestration automates the deployment, management, scaling, and networking of
containers across the cluster. It is focused on managing the life cycle of containers.

• Enterprises that need to deploy and manage hundreds or thousands of Linux® containers and
hosts can benefit from container orchestration.

• Container orchestration is used to automate the following tasks at scale:

✓ Configuring and scheduling of containers
✓ Provisioning and deployment of containers
✓ Redundancy and availability of containers
✓ Scaling up or removing containers to spread application load evenly across host

infrastructure
✓ Movement of containers from one host to another if there is a shortage of

resources in a host, or if a host dies
✓ Allocation of resources between containers
✓ External exposure of services running in a container with the outside world
✓ Load balancing of service discovery between containers
✓ Health monitoring of containers and hosts

Swarm vs Kubernetes

Features Kubernetes Docker Swarm

Installation & Cluster Configuration
Installation is complicated; but once
setup, the cluster is very strong

Installation is very simple; but cluster
is not very strong

GUI GUI is the Kubernetes Dashboard There is no GUI

Scalability Highly scalable & scales fast
Highly scalable & scales 5x faster
than Kubernetes

Auto-Scaling Kubernetes can do auto-scaling
Docker Swarm cannot do auto-
scaling

Rolling Updates & Rollbacks
Can deploy Rolling updates & does
automatic Rollbacks

Can deploy Rolling updates, but not
automatic Rollbacks

Data Volumes
Can share storage volumes only with
other containers in same Pod

Can share storage volumes with any
other container

Logging & Monitoring
In-built tools for logging &
monitoring

3rd party tools like ELK should be
used for logging & monitoring

Both Kubernetes and Docker Swarm are important tools that are used to deploy containers
inside a cluster but there are subtle differences between the both

Kubernetes

• Kubernetes also known as K8s, is an open-source Container Management tool
• It provides a container runtime, container orchestration, container-centric

infrastructure orchestration, self-healing mechanisms, service discovery, load balancing
and container (de)scaling.

• Initially developed by Google, for managing containerized applications in a clustered
environment but later donated to CNCF

• Written in Golang
• It is a platform designed to completely manage the life cycle of containerized

applications and services using methods that provide predictability, scalability, and high
availability.

Kubernetes

Certified Kubernetes Distributions

https://www.cncf.io/certification/software-conformance/

• Cloud Managed: EKS by AWS, AKS by Microsoft and GKE by google
• Self Managed: OpenShift by Redhat and Docker Enterprise
• Local dev/test: Micro K8s by Canonical, Minikube
• Vanilla Kubernetes: The core Kubernetes project(baremetal), Kubeadm
• Special builds: K3s by Rancher, a light weight K8s distribution for Edge devices

Online Emulator: https://labs.play-with-k8s.com/

Kubernetes Cluster

A Kubernetes cluster is a set of physical or virtual machines and other infrastructure resources
that are needed to run your containerized applications. Each machine in a Kubernetes cluster is
called a node.
There are two types of node in each Kubernetes cluster:
Master node(s): hosts the Kubernetes control plane components and manages the cluster
Worker node(s): runs your containerized applications

worker worker

Master

Kubernetes Architecture

ETCDScheduler Controller

Master

API Server

Kube-proxy Kubelet

Docker

PodsContainers

Kubelet Kube-proxy

Docker

PodsContainers

Worker 01 Worker 02

kubectl Web UI

Kubernetes Architecture

https://blog.alexellis.io/kubernetes-in-10-minutes/

Kubernetes Architecture

• Master is responsible for managing the complete
cluster.

• You can access master node via the CLI, GUI, or API
• The master watches over the nodes in the cluster and

is responsible for the actual orchestration of
containers on the worker nodes

• For achieving fault tolerance, there can be more than
one master node in the cluster.

• It is the access point from which administrators and
other users interact with the cluster to manage the
scheduling and deployment of containers.

• It has four components: ETCD, Scheduler, Controller
and API Server

Kubernetes Master

Kubernetes Architecture

ETCD

Kubernetes Master

• ETCD is a distributed reliable key-value store used by
Kubernetes to store all data used to manage the cluster.

• When you have multiple nodes and multiple masters in
your cluster, etcd stores all that information on all the
nodes in the cluster in a distributed manner.

• ETCD is responsible for implementing locks within the
cluster to ensure there are no conflicts between the
Masters

Scheduler

• The scheduler is responsible for distributing work or containers across multiple
nodes.

• It looks for newly created containers and assigns them to Nodes.

Kubernetes Architecture

API server manager

Kubernetes Master

• Masters communicate with the rest of the cluster through
the kube-apiserver, the main access point to the control
plane.

• It validates and executes user’s REST commands
• kube-apiserver also makes sure that configurations in etcd

match with configurations of containers deployed in the
cluster.

Controller manager

• The controllers are the brain behind orchestration.
• They are responsible for noticing and responding when nodes, containers or endpoints goes down.

The controllers makes decisions to bring up new containers in such cases.
• The kube-controller-manager runs control loops that manage the state of the cluster by checking if

the required deployments, replicas, and nodes are running in the cluster

Kubernetes Architecture

Kubectl

Kubernetes Master

• kubectl is the command line utility using which we can
interact with k8s cluster

• Uses APIs provided by API server to interact.
• Also known as the kube command line tool or kubectl or

kube control.
• Used to deploy and manage applications on a Kubernetes

• kubectl run nginx used to deploy an application on the cluster.
• kubectl cluster-info used to view information about the cluster and the
• kubectl get nodes used to list all the nodes part of the cluster.

Kubernetes Architecture

Kubelet

Kubernetes Worker

• Worker nodes have the kubelet agent that is responsible for
interacting with the master to provide health information of
the worker node

• To carry out actions requested by the master on the worker
nodes.

Kube proxy

• The kube-proxy is responsible for ensuring network traffic is routed properly to internal and external
services as required and is based on the rules defined by network policies in kube-controller-manager
and other custom controllers.

Kubernetes

What is K3s?

• K3s is a fully compliant Kubernetes distribution with the following enhancements:
✓ Packaged as a single binary
✓ <100MB memory footprint
✓ Supports ARM and x86 architectures
✓ Lightweight storage backend based on sqlite3 as the default storage mechanism to replace

heavier ETCD server
✓ Docker is replaced in favour of containerd runtime
✓ Inbuilt Ingress controller (Traefik)

Kubernetes

K3s Architecture

Kubernetes

K3s Setup using VirtualBox

• Use 3VMs(1 master and 2 workers). All VMs should have bridge network adapter enabled
• Create a host only networking adapter(DHCP disabled) and connect all VMs to it. This is to have static IPs for

all VMs in the cluster. Make sure static IPs are configured in each VM in the same subnet range of host only
network

On Master
• bash -c "curl -sfL https://get.k3s.io | sh -“
• TOKEN=cat /var/lib/rancher/k3s/server/node-token
• IP = IP of master node where API server is running
On Worker nodes
• bash -c "curl -sfL https://get.k3s.io | K3S_URL=\"https://$IP:6443\" K3S_TOKEN=\"$TOKEN\" sh -"

https://medium.com/better-programming/local-k3s-cluster-made-easy-with-multipass-108bf6ce577c

Kubernetes Pods

Kubernetes

Pods
• Basic scheduling unit in Kubernetes. Pods are often ephemeral
• Kubernetes doesn’t run containers directly; instead it wraps one or more containers into a higher-level

structure called a pod
• It is also the smallest deployable unit that can be created, schedule, and managed on a Kubernetes

cluster. Each pod is assigned a unique IP address within the cluster.
• Pods can hold multiple containers as well, but you should limit yourself when possible. Because pods

are scaled up and down as a unit, all containers in a pod must scale together, regardless of their
individual needs. This leads to wasted resources.

Ex: nginx, mysql,
wordpress..

10.244.0.22

containers

Kubernetes

Pods
• Any containers in the same pod will share the same storage volumes and network resources and

communicate using localhost
• K8s uses YAML to describe the desired state of the containers in a pod. This is also called a Pod Spec.

These objects are passed to the kubelet through the API server.
• Pods are used as the unit of replication in Kubernetes. If your application becomes too popular and a

single pod instance can’t carry the load, Kubernetes can be configured to deploy new replicas of your
pod to the cluster as necessary.

10.244.0.22

containers

Using the example from the above figure, you could run curl 10.1.0.1:3000 to
communicate to the one container and curl 10.1.0.1:5000 to communicate to the
other container from other pods. However, if you wanted to talk between
containers - for example, calling the top container from the bottom one, you could
use http://localhost:3000.

Inside cluster

Kubernetes
Scaling Pods
• All containers within the pod get scaled together.
• You cannot scale individual containers within the pods. The pod is the unit of scale in K8s.
• Recommended way is to have only one container per pod. Multi container pods are very rare.
• In K8s, initcontainer is sometimes used as a second container inside pod.

initcontainers are exactly like regular containers, except that they always run to completion. Each init container must complete successfully before the next one starts.
If a Pod’s init container fails, Kubernetes repeatedly restarts the Pod until the init container succeeds

Kubernetes

Imperative vs Declarative commands

• Kubernetes API defines a lot of objects/resources, such as namespaces, pods, deployments,
services, secrets, config maps etc.

• There are two basic ways to deploy objects in Kubernetes: Imperatively and Declaratively

Imperatively
• Involves using any of the verb-based commands like kubectl run, kubectl create, kubectl

expose, kubectl delete, kubectl scale and kubectl edit
• Suitable for testing and interactive experimentation

Declaratively
• Objects are written in YAML files and deployed using kubectl create or kubectl apply
• Best suited for production environments

Kubernetes

Manifest /Spec file

• K8s object configuration files - Written in YAML or JSON
• They describe the desired state of your application in terms of Kubernetes API objects. A file

can include one or more API object descriptions (manifests).

manifest file template

apiVersion - version of the Kubernetes API

used to create the object

kind - kind of object being created

metadata - Data that helps uniquely identify

the object, including a name and
optional namespace

spec - configuration that defines the desired for

the object

apiVersion: v1
kind: Pod
metadata:

name: …
spec:

containers:
- name: …

apiVersion: v1
kind: Pod
metadata:

name: …
spec:

containers:
- name: …

Multiple
resource

definitions

Kubernetes

Manifest files Man Pages

apiVersion: v1
kind: Pod
metadata:

name: …
spec:

containers:
- name: …

apiVersion: v1
kind: Pod
metadata:

name: …
spec:

containers:
- name: …

Multiple
resource

definitions

List all K8s API supported Objects and Versions
kubectl api-resources
kubectl api-versions

Man pages for objects
kubectl explain <object>.<option>
kubectl explain pod
kubectl explain pod.apiVersion
kubectl explain pod.spec

Kubernetes

Once the cluster is setup…

kubectl version

kubectl get nodes –o wide

Kubernetes

Once the cluster is setup…

kubectl cluster-info

kubectl cluster-info dump --output-directory=/path/to/cluster-state # Dump current cluster state to /path/to/cluster-state

Kubernetes

Creating Pods

kubectl run <pod-name> --image <image-name>
kubectl run nginx --image nginx --dry-run=client

kubectl run nginx --image nginx --dry-run=client –o yaml

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

dry-run doesn’t run the
command but will show what

the changes the command
would do to the cluster

shows the command output in
YAML. Shortcut to create a

declarative yaml from
imperative commands

Kubernetes

Creating Pods: Imperative way

kubectl run test --image nginx --port 80 - Also exposes port 80 of container
kubectl get pods –o wide

kubectl describe pod test – display extended information of pod

10.244.2.2

container

Kubernetes

Creating Pods

curl <ip-of-pod>

10.244.2.2

container

Kubernetes

Creating Pods: Declarative way

• kubectl create –f pod-definition.yml
• kubectl apply –f pod-definition.yml – if manifest file is

changed/updated after deployment and need to re-deploy
the pod again

• kubectl delete pod <pod-name>

pod-definition.yml

apiVersion: v1
kind: Pod
metadata:
name: nginx-pod
labels:
app: webapp

spec:
containers:
- name: nginx-container
image: nginx
ports:

- containerPort: 80

Kubernetes

Pod Networking

Kubernetes

Replication Controller

• A single pod may not be sufficient to handle the user traffic. Also if this only pod goes
down because of a failure, K8s will not bring this pod up again automatically

• In order to prevent this, we would like to have more than one instance or POD running at
the same time inside the cluster

• Kubernetes supports different controllers(Replicacontroller & ReplicaSet) to handle
multiple instances of a pod. Ex: 3 replicas of nginx webserver

• Replication Controller ensures high availability by replacing the unhealthy/dead pods with
a new one to ensure required replicas are always running inside a cluster

• So, does that mean you can’t use a replication controller if you plan to have a single POD?
No! Even if you have a single POD, the replication controller can help by automatically
bringing up a new POD when the existing one fails.

• Another reason we need replication controller is to create multiple PODs to share the load
across them.

• Replica controller is deprecated and replaced by Replicaset

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

When a command is given
through kubectl

Kubelet

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

API Server updates the
deployment details in ETCD

Kubelet

deployment

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

Controller manager through
API Server identifies its
workload and creates a
ReplicaSet

Kubelet

deployment

replicaset

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

ReplicaSet creates required
number of pods and updates
the ETCD.
Note the status of pods. They
are still in PENDING state

Kubelet

deployment

replicaset

pod PENDING
pod PENDING
pod PENDING

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

Scheduler identifies its workload
through API-Server and decides
the nodes onto which the pod are
to be scheduled.
At this stage, pods are assigned
to a node

Kubelet

deployment

replicaset

pod slave01
pod slave02
pod slave01

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

Kubelet identifies its workload
through API-Server and
understands that it needs to
deploy some pods on its node

Kubelet

deployment

replicaset

pod slave01
pod slave02
pod slave01

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

Kubelet instructs the docker
daemon to create the pods. At
the same time it updates the
status as ‘Pods CREATING’ in
ETCD through API Server

Kubelet

deployment

replicaset

pod CREATING

pod CREATING

pod CREATING

Pod Pod

Pod

Kubernetes

Behind the scene…

K8s Master

K8s slave 01

K8s slave 02

$ kubectl run nginx –
image=nginx –replicas=3

ETCD

API Server

Scheduler Controller

Kubelet

Once pods are created and run,
Kubelet updates the pod status
as RUNNING in ETCD through
API Server

Kubelet

deployment

replicaset

pod RUNNING

pod RUNNING

pod RUNNING

Pod Pod

Pod

Kubernetes

Labels and Selectors

Labels
• Labels are key/value pairs that are attached to objects,

such as pods
• Labels allows to logically group certain objects by giving

various names to them
• You can label pods, services, deployments and

even nodes

kubectl get pods -l environment=production
kubectl get pods -l environment=production,
tier=frontend

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Kubernetes

Labels and Selectors

• If labels are not mentioned while deploying k8s objects using imperative commands, the
label is auto set as app: <object-name>

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

kubectl run --image nginx nginx
kubectl get pods --show-labels

kubectl label pod nginx environment=dev

Adding Labels

Kubernetes

Labels and Selectors

Selectors
• Selectors allows to filter the objects based on labels
• The API currently supports two types of selectors: equality-based and set-based
• A label selector can be made of multiple requirements which are comma-separated

Equality-based Selector
• Equality- or inequality-based requirements allow

filtering by label keys and values.
• Three kinds of operators are admitted =,==,!=

Used by Replication Controllers and Services

Kubernetes

Labels and Selectors

Selectors
• Selectors allows to filter the objects based on labels
• The API currently supports two types of selectors: equality-based and set-based
• A label selector can be made of multiple requirements which are comma-separated

Set-based Selector
• Set-based label requirements allow filtering

keys according to a set of values.
• Three kinds of operators are supported: in,notin

and exists (only the key identifier).

kubectl get pods -l 'environment in (production, qa)'

Used by ReplicaSets, Deployments, DaemonSets

Kubernetes

ReplicaSet

• ReplicaSets are a higher-level API that gives the ability to easily run multiple instances of a
given pod

• ReplicaSets ensures that the exact number of pods(replicas) are always running in the
cluster by replacing any failed pods with new ones

• The replica count is controlled by the replicas field in the resource definition file
• Replicaset uses set-based selectors whereas replicacontroller uses equality based selectors

Kubernetes

Pod vs ReplicaSet

apiVersion: apps/v1
kind: ReplicaSet
metadata:

name: nginx-replicaset
labels:

app: webapp
type: front-end

spec:
replicas: 3
selector:

matchLabels:
app: webapp

template:
metadata:

name: nginx-pod
labels:

app: webapp
spec:

containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

apiVersion: v1
kind: Pod
metadata:

name: nginx-pod
labels:

app: webapp
spec:

containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

pod.yml

replicaset.yml

Kubernetes
ReplicaSet Manifest file

Kubernetes

ReplicaSet

apiVersion: apps/v1
kind: ReplicaSet
metadata:

name: nginx-replicaset
labels:

app: webapp
type: front-end

spec:
replicas: 3
selector:

matchLabels:
app: webapp

template:
metadata:

name: nginx-pod
labels:

app: webapp
spec:

containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

kubectl create –f replica-set.yml

kubectl get rs –o wide

kubectl get pods –o wide

Kubernetes

ReplicaSet

• kubectl edit replicaset <replicaset-name> - edit a replicaset; like image, replicas

• kubectl delete replicaset <replicaset-name> - delete a replicaset; like image, replicas

• kubectl delete -f replica-set.yml
• kubectl get all - get pods, replicasets, deployments, services all in one shot

• kubectl replace -f replicaset-definition.yml -replaces the pods with updated
definition file

• kubectl scale -–replicas=6 –f replicaset-definition.yml – scale using definition file

• kubectl scale -–replicas=6 replicaset <replicaset-name> - using name of
replicaset

Kubernetes Pods

Kubernetes Deployments

Kubernetes

Deployment

• A Deployment provides declarative updates for Pods and ReplicaSets.
• You describe a desired state in a Deployment, and the Deployment Controller changes the actual

state to the desired state at a controlled rate.
• It seems similar to ReplicaSets but with advanced functions
• Deployment is the recommended way to deploy a pod or RS
• By default Kubernetes performs deployments in rolling update strategy.
• Below are some of the key features of deployment:

✓ Easily deploy a RS
✓ Rolling updates pods
✓ Rollback to previous deployment versions
✓ Scale deployment
✓ Pause and resume deployment

Kubernetes

Deployment Strategy

• Whenever we create a new deployment, K8s triggers a Rollout.
• Rollout is the process of gradually deploying or upgrading your application containers.
• For every rollout/upgrade, a version history will be created, which helps in rolling back to working

version in case of an update failure
• In Kubernetes there are a few different ways to release updates to an application

• Recreate: terminate the old version and release the new one. Application experiences downtime.
• RollingUpdate: release a new version on a rolling update fashion, one after the other. It’s the

default strategy in K8s. No application downtime is required.
• Blue/green: release a new version alongside the old version then switch traffic

spec:
replicas: 10

strategy:
type: RollingUpdate
rollingUpdate:

maxSurge: 2
maxUnavailable: 0

spec:
replicas: 10

strategy:
type: Recreate

Kubernetes

Rolling Update Strategy
• By default, deployment ensures that only 25% of your pods are unavailable during an update and does not

update more that 25% of the pods at a given time
• It does not kill old pods until/unless enough new pods come up
• It does not create new pods until a sufficient number of old pods are killed
• There are two settings you can tweak to control the process: maxUnavailable and maxSurge. Both have the

default values set - 25%
• The maxUnavailable setting specifies the maximum number of pods that can be unavailable during the rollout

process. You can set it to an actual number(integer) or a percentage of desired pods
Let’s say maxUnavailable is set to 40%. When the update starts, the old ReplicaSet is scaled down to 60%.
As soon as new pods are started and ready, the old ReplicaSet is scaled down again and the new ReplicaSet is scaled up. This
happens in such a way that the total number of available pods (old and new, since we are scaling up and down) is always at least
60%.

• The maxSurge setting specifies the maximum number of pods that can be created over the desired number of
pods

If we use the same percentage as before (40%), the new ReplicaSet is scaled up right away when the rollout starts. The new
ReplicaSet will be scaled up in such a way that it does not exceed 140% of desired pods. As old pods get killed, the new ReplicaSet
scales up again, making sure it never goes over the 140% of desired pods

Kubernetes

Deployments
• kubectl create deployment nginx --image nginx --dry-run -o yaml
• kubectl create -f deployment.yml --record (--record is optional, it just

records the events in the deployment)

• kubectl get deployments

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 10
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

Kubernetes

Deployments
• kubectl describe deployment <deployment-name>

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 10
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

Kubernetes

Deployments
• kubectl get pods –o wide

• kubectl edit deployment <deployment -name> - perform live edit of

deployment

• kubectl scale deployment <deployment -name> --replicas2
• kubectl apply –f deployment.yml – redeploy a modified yaml file; Ex:

replicas changed to 5, image to nginx:1.18

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 10
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx-container

image: nginx
ports:
- containerPort: 80

Kubernetes

Deployments
• kubectl rollout status deployment <deployment -name>

• kubectl rollout history deployment <deployment -name>

Kubernetes

Deployments
• kubectl rollout undo deployment <deployment -name>

• kubectl rollout undo deployment <deployment -name> --to-revision=1
• kubectl rollout pause deployment <deployment -name>
• kubectl rollout resume deployment <deployment -name>
• kubectl delete -f <deployment-yaml-file> - deletes deployment and related dependencies

• kubectl delete all --all – deletes pods, replicasets, deployments and services in current namespace

Kubernetes

Namespaces

• Kubernetes clusters can manage large numbers of unrelated
workloads concurrently and organizations often choose to deploy
projects created by separate teams to shared clusters.

• With multiple deployments in a single cluster, there are high
chances of deleting deployments belong to deff prohjects.

• So namespaces allow you to group objects together so you can
filter and control them as a unit/group.

• Namespaces provide a scope for names. Names of resources need
to be unique within a namespace, but not across namespaces.

• So each Kubernetes namespace provides the scope for Kubernetes
Names it contains; which means that using the combination of an
object name and a Namespace, each object gets a unique identity
across the cluster

Namespaces are Kubernetes objects which partition a single Kubernetes cluster into multiple
virtual clusters

Kubernetes

Namespaces

By default, a Kubernetes cluster is created with the
following three namespaces:
• default: It’s a default namespace for users. By default,

all the resource created in Kubernetes cluster are
created in the default namespace

• Kube-system: It is the Namespace for objects created
by Kubernetes systems/control plane. Any changes to
objects in this namespace would cause irreparable
damage to the cluster itself

• kube-public: Namespace for resources that are publicly
readable by all users. This namespace is generally
reserved for cluster usage like Configmaps and Secrets

Kubernetes

Namespaces

kubectl get all -n kube-system (lists available objects under a specific namespace)

kubectl get namespaces

kubectl get all --all-namespaces (lists available objects under all available namespaces)

Kubernetes

Namespaces

kubectl create ns dev # Namespace for Developer team
kubectl create ns qa # Namespace for QA team
kubectl create ns production # Namespace for Production team

Create a namespace

Deploy objects in a namespace

kubectl run nginx --image=nginx -n dev
kubectl get pod/nginx –n dev

kubectl apply --namespace=qa -f pod.yaml

Delete a namespace

kubectl delete ns production

Kubernetes Services

Front
end

Back
end

Kubernetes

Services

• Services logically connect pods across the cluster to enable networking between them
• The lifetime of an individual pod cannot be relied upon; everything from their IP addresses to

their very existence are prone to change.
• Kubernetes doesn’t treat its pods as unique, long-running instances; if a pod encounters an

issue and dies, it’s Kubernetes’ job to replace it so that the application doesn’t experience any
downtime

• Services makes sure that even after a pod(back-end) dies because of a failure, the newly
created pods will be reached by its dependency pods(front-end) via services. In this case,
front-end applications always find the backend applications via a simple service(using service
name or IP address) irrespective of their location in the cluster

• Services point to pods directly using labels. Services do not point to deployments or
ReplicaSets. So, all pods with the same label gets attached to same service

• 3 types: ClusterIP, NodePort and LoadBalancer

Kubernetes

Pods’ lifecycle are erratic; they
come and go by Kubernetes’ will.

Not healthy? Killed.
Not in the right place? Cloned,
and killed.

So how can you send a request to
your application if you can’t know
for sure where it lives?
The answer lies in services.

Services are tied to the pods using
pod labels and provides a stable
end point for the users to reach the
application.

When requesting your application, you don’t care about its location or about
which pod answers the request.

Services

Kubernetes

ClusterIP
• ClusterIP service is the default Kubernetes service.
• It gives you a service inside your cluster that other apps inside

your cluster can access
• It restricts access to the application within the cluster itself

and no external access
• Useful when a front-end app wants to communicate with

back-end
• Each ClusterIP service gets a unique IP address inside the

cluster
• Similar to --links in Docker

https://kubernetes.io/docs/concepts/services-networking/service/

Services

Services point to pods directly using labels!!!

Kubernetes

When services are not available

• Imagine 2 pods on 2 separate
nodes node-1 & node-2 with
their local IP address

• pod-nginx can ping and connect
to pod-python using its internal
IP 1.1.1.3.

Kubernetes

When services are not available

• Now let’s imagine the pod-python
dies and a new one is created.

• Now pod-nginx cannot reach pod-
python on 1.1.1.3 because its IP is
changed to 1.1.1.5.

How do we remove this dependency?

Kubernetes

Enter services…

• Services logically connects pods
together

• Unlike pods, a service is not scheduled
on a specific node. It spans across the
cluster

• Pod-nginx can always safely connect to
pod-python using service IP 1.1.10.1 or
the DNS name of service (service-
python)

• Even if the python pod gets deleted and
recreated again, nginx pod can still
reach python pod using the service but
not with IP of python pod directly

Kubernetes

Enter services…

• Multiple ClusterIP services

Kubernetes

ClusterIP

Kubernetes

apiVersion: v1
kind: Service
metadata:

name: ingress-nginx
spec:

type: ClusterIP
ports:
- name: http

port: 80
targetPort: 80
protocol: TCP

selector:
app: nginx-backend

apiVersion: v1
kind: Pod
metadata:

name: backend-pod
labels:

app: nginx-backend
spec:

containers:
- name: nginx-container

image: nginx
ports:

- containerPort: 80

Nginx

Alpine

10.244.0.22

10.244.0.24

Pod

Pod

ingress-nginx
(ClusterIP)

10.20.0.18

80

clusterservice.yml pod.yml

80

targetPort

port

ClusterIP

Services

Kubernetes

apiVersion: v1
kind: Service
metadata:

name: ingress-nginx
spec:

type: ClusterIP
ports:
- name: http

port: 80
targetPort: 80
protocol: TCP

selector:
app: nginx-backend

apiVersion: v1
kind: Pod
metadata:

name: backend-pod
labels:

app: nginx-backend
spec:

containers:
- name: nginx-container

image: nginx
ports:

- containerPort: 80

clusterip-service.yml pod.yml

kubectl create –f clusterservice.yml
kubectl create –f pod.yml

root@alpine: # curl ingress-nginx

check the endpoints: kubectl describe
svc/<svc-name>

ClusterIP

Services

Kubernetes

Services

NodePort
• NodePort opens a specific port on all the Nodes in

the cluster and forwards any traffic that is received
on this port to internal services

• Useful when front end pods are to be exposed outside
the cluster for users to access it

• NodePort is build on top of ClusterIP service by
exposing the ClusterIP service outside of the cluster

• NodePort must be within the port range 30000-
32767

• If you don’t specify this port, a random port will be
assigned. It is recommended to let k8s auto assign
this port

Kubernetes

spec:
type: NodePort
ports:
- port: 80
targetPort: 80
nodePort: 30080

80

NodePort

Kubernetes

NodePort

Kubernetes

Multi Instances in same node

Kubernetes

Multi Instances across cluster

Kubernetes

NodePort

• Application can be reached from any of the available nodes in the cluster using
<node-ip>:<node-port>

Kubernetes

NodePort

apiVersion: v1
kind: Service
metadata:

name: nodeport-service
spec:

type: NodePort
ports:
- port: 80

targetPort: 80
nodePort: 30001
protocol: TCP

selector:
app: nginx-frontend

apiVersion: v1
kind: Pod
metadata:

name: nginx-frontend
labels:

app: nginx-frontend
spec:

containers:
- name: nginx-container

image: nginx
ports:

- containerPort: 80

nodeport-service.yml pod.yml

Nginx

10.244.1.66 Node 03

ingress-nginx
(NodePort)

10.105.32.217

80

80

targetPort

port

192.168.0.2

30001

NodePort

Master/Workerkubectl create –f nodeportservice.yml
kubectl create –f pod.yml

Kubernetes

Demo: NodePort

kubectl create –f nodeport-service.yml
kubectl create –f pod.yml

kubectl get services

Kubernetes

Demo: NodePort

kubectl describe service <service-name>

Kubernetes

Demo: NodePort

kubectl get nodes –o wide

192.168.0.107:30001

192.168.0.107:30001

Kubernetes

NodePort Limitations

• In NodePort service, users can access application using
the URL http://<node-ip>:<node-port>

• In Production environment, we do not want the users to
have to type in the IP address every time to access the
application

• So we configure a DNS server to point to the IP of the
nodes. Users can now access the application using the
URL http://xyz.com:30001

• Now, we don’t want the user to have to remember port
number either.

• However, NodePort service can only allocate high
numbered ports which are greater than 30,000.

• So we deploy a proxy server between the DNS server
and the cluster that proxies requests on port 80 to port
30001 on the nodes.

• We then point the DNS to proxy server’s IP, and users
can now access the application by simply visiting
http://xyz.com

spec:
type: NodePort
ports:
- port: 80

targetPort: 5000
nodePort: 30001
protocol: TCP

NodePort 30001 is being used only for demo. You can configure this port
number in service manifest file or let K8s auto assign for you.

Kubernetes

Services
Load Balancer
• A LoadBalancer service is the standard way to expose a

Kubernetes service to the internet
• On GKE(Google Kubernetes Engine), this will spin up a Network

Load Balancer that will give you a single IP address that will
forward all external traffic to your service

• All traffic on the port you specify will be forwarded to the service
• There is no filtering, no routing, etc. This means you can send

almost any kind of traffic to it, like HTTP, TCP, UDP or
WebSocket's

• Few limitations with LoadBalancer:
▪ Every service exposed will gets it's own IP address
▪ It gets very expensive to have external IP for each of the

service(application)

https://rancher.com/blog/2018/2018-06-08-load-balancing-user-apps-with-rancher/

Kubernetes

Services
Load Balancer
• On Google Cloud, AWS, or Azure, a service type of

LoadBalancer in the service manifest file will immediately
run an Elastic / Cloud Load Balancer that assigns externally
IP (public IP) to your application

• But for on-prem or bare-metal k8s clusters, this
functionality is not available

• Using service type as LoadBalancer on bare-metal will not
assign any external IP and service resource will remain in
Pending state forever

https://collabnix.com/3-node-kubernetes-cluster-on-bare-metal-system-in-5-minutes/

spec:
type: LoadBalancer
selector:
app: hello

ports:
- port: 80
targetPort: 8080
protocol: TCP

Kubernetes

Load Balancer

apiVersion: v1
kind: Service
metadata:

name: lb-service
labels:

app: hello
spec:

type: LoadBalancer
selector:

app: hello
ports:
- port: 80

targetPort: 80
protocol: TCP

Services

loadbalancer-service.yml

External IP
10.12.16.22

GCP Load Balancer

Kubernetes

GCP LoadBalancer

www.flask-app.com

DNS Server

Google Kubernetes Engine (GKE)

Few limitations with LoadBalancer
• Every service exposed will gets it's

own public IP address
• It gets very expensive to have public

IP for each of the service

www.flask-app.com

Kubernetes
GCP LoadBalancer Cons

Kubernetes Cluster

connected-city service connected-factory service connected-tools service

connected-city pods connected-factory pods connected-tools pods

www.connected-city.com
www.connected-factory.com
www.connected-tools.com

External IP
10.12.16.22

GCP Load Balancer

External IP
10.12.16.23

External IP
10.12.16.24

Public IP =

Kubernetes

LoadBalancer

• Application can be reached using the
external IP assigned by the LoadBalancer

• The LoadBalancer will forward the traffic
to the available nodes in the cluster on
the nodePort assigned to the service

Kubernetes

Cons

GCP LoadBalancer

Every service exposed will gets it's own IP address
It gets very expensive to have external IP for each of the service(application)

Kubernetes

Cloud LoadBalancer: Cons

• Every service exposed will gets it's own IP address
• It gets very expensive to have external IP for each

of the service(application)
• We see two LoadBalancers, each having its own IP.

If we send a request to LoadBalancer 22.33.44.55
it gets redirected to our internal service-nginx. If we
send the request to 77.66.55.44 it gets redirected
to our internal service-python.

• This works great! But IP addresses are rare and
LoadBalancer pricing depends on the cloud
providers. Now imagine we don’t have just two but
many more internal services for which we would
like to create LoadBalancers, costs would scale up.

• Might there be another solution which allows us to
only use one LoadBalancer (with one IP) but still
reach both of our internal services directly?.

Kubernetes

LoadBalancer Vs Ingress

• Public IPs aren’t cheap
• ALB can only handle limited IPs
• So SSL termination

(Application Load Balancer)

• Ingress acts as internal LoadBalancer
• Routes traffic based on URL path
• All applications will need only one public IP

Kubernetes

MetalLB Load Balancer

Services

https://metallb.universe.tf/

• MetalLB is a load-balancer
implementation for bare metal
Kubernetes clusters.

• It allows you to create Kubernetes
services of type “LoadBalancer” in bare-
metal/on-prem clusters that don’t run
on cloud providers like AWS, GCP,
Azure and DigitalOcean.

Kubernetes

Ingress Resource(rules)

• With cloud LoadBalancers, we need to pay for each of the
service that is exposed using LoadBalancer as the service type.
As services grow in number, complexity to manage SSLs,
Scaling, Auth etc., also increase

• Ingress allows us to manage all of the above within the
Kubernetes cluster with a definition file, that lives along with
the rest of your application deployment files

• Ingress controller can perform load balancing, Auth, SSL and
URL/Path based routing configurations by being inside the
cluster living as a Deployment or a DaemonSet

• Ingress helps users access the application using a single
externally accessible URL, that you can configure to route to
different services within your cluster based on the URL path, at
the same time terminate SSL/TLS

www.smartfactory.com

www.smartcity.com

service 1

service 2

https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

Kubernetes

Why SSL Termination at LoadBalancer?

• SSL termination/offloading represents the end or termination point of an SSL connection
• SSL termination at LoadBalancer decrypts and verifies data on the load balancer instead of

the application server. Unencrypted traffic is sent between the load balancer and the backend
servers

• It is desired because decryption is resource and CPU intensive
• Putting the decryption burden on the load balancer enables the server to spend processing

power on application tasks, which helps improve performance
• It also simplifies the management of SSL certificates

Kubernetes

Ingress Controller

• Ingress resources cannot do anything on their own. We need to have an Ingress controller in
order for the Ingress resources to work

• Ingress controller implements rules defined by ingress resources
• Ingress controllers doesn’t come with standard Kubernetes binary, they have to be deployed

separately
• Kubernetes currently supports and maintains GCE and nginx ingress controllers
• Other popular controllers include Traefik, HAProxy ingress, istio, Ambassador etc.,
• Ingress controllers are to be exposed outside the cluster using NodePort or with a Cloud Native

LoadBalancer.
• Ingress is the most useful if you want to expose multiple services under the same IP address
• Ingress controller can perform load balancing, Auth, SSL and URL/Path based routing

configurations by being inside the cluster living as a Deployment or a DaemonSet

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

Kubernetes

Ingress Controller

30001

connected-city.com connected-factory.com others

GCE LB
NGINX

TRAEFIK
CONTOUR

ISTIO

Kubernetes Cluster Ingress NodePort/ Cloud LB

Ingress Controller

connected-city service connected-factory service default service

connected-city pods connected-factory pods default pods

www.connected-city.com
www.connected-factory.com
www.connected-tools.com

custom 404
pages

Ingress
Rules

Kubernetes

Nginx Ingress Controller

• Ingress-nginx is an Ingress controller for Kubernetes using NGINX as a reverse proxy and
load balancer

• Officially maintained by Kubernetes community
• Routes requests to services based on the request host or path, centralizing a number of

services into a single entrypoint.
Ex: www.mysite.com or www.mysite.com/stats

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-
0.32.0/deploy/static/provider/baremetal/deploy.yaml

https://github.com/kubernetes/ingress-nginx/blob/master/docs/deploy/index.md#bare-metal

Deploy Nginx Ingress Controller

www.smartfactory.com

www.smartcity.com

service 1

service 2

Kubernetes

Ingress Rules

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: ingress-rules
spec:

rules:
- host:
http:

paths:
- path: /nginx
backend:

serviceName: nginx-service
servicePort: 80

- path: /flask
backend:

serviceName: flask-service
servicePort: 80

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: ingress-rules
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /

spec:
rules:
- host: nginx-app.com
http:

paths:
- backend:

serviceName: nginx-service
servicePort: 80

- host: flask-app.com
http:

paths:
- backend:

serviceName: flask-service
servicePort: 80

Path based routing Host based routing

ingress-rules.yml

Ingress-controller executes these ingress-rules by comparing with the http requested URL in the http header

Kubernetes
Demo: Ingress

connected-factory.com

connected-city.com

• 3VMs K8s Cluster + 1 VM for Reverse Proxy
• Deploy Ingress controller
• Deploy pods
• Deploy services
• Deploy Ingress rules
• Configure external reverse proxy
• Update DNS names
• Access applications using URLs

• connected-city.com
• connected-factory.com

Kubernetes
Demo: Ingress

Architecture

DNS Server

HAProxy

10.11.3.5

server 192.168.0.101:30001
server 192.168.0.102:30001
server 192.168.0.103:30001

k8s cluster node IPs with
ingress controller port

HAProxy Configuration

Kubernetes Cluster

connected-city.com

Kubernetes

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-
0.32.0/deploy/static/provider/baremetal/deploy.yaml

1. Deploy Nginx Ingress Controller

Demo: Ingress

apiVersion: v1
kind: Service
metadata:
name: connectedcity-service

spec:
ports:
- port: 80
targetPort: 5000

selector:
app: connectedcity

2. Deploy pods and services

apiVersion: apps/v1
kind: Deployment
metadata:
name: connectedcity-deployment

spec:
replicas: 3
selector:
matchLabels:
app: connectedcity

template:
metadata:
labels:
app: connectedcity

spec:
containers:
- name: connectedcity
image: kunchalavikram/connectedcity:v1
ports:
- containerPort: 5000

apiVersion: v1
kind: Service
metadata:
name: connectedfactory-service

spec:
ports:
- port: 80
targetPort: 5000

selector:
app: connectedfactory

apiVersion: apps/v1
kind: Deployment
metadata:
name: connectedfactory-deployment

spec:
replicas: 3
selector:
matchLabels:
app: connectedfactory

template:
metadata:
labels:
app: connectedfactory

spec:
containers:
- name: connectedfactory
image: kunchalavikram/connectedfactory:v1
ports:
- containerPort: 5000

Application-1
Deployment + ClusterIP
service

Application-2
Deployment + ClusterIP
service

kubectl apply –f <object>.yml

Kubernetes
Demo: Ingress

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: ingress-rules
annotations:

nginx.ingress.kubernetes.io/rewrite-target: /
spec:

rules:
- host: connected-city.com

http:
paths:
- backend:

serviceName: connectedcity-service
servicePort: 80

- host: connected-factory.com
http:

paths:
- backend:

serviceName: connectedfactory-service
servicePort: 80

3. Deploy ingress rules manifest file

• Host based routing rules
• Connects to various services depending

upon the host parameter

kubectl apply –f <object>.yml

Kubernetes
Demo: Ingress

4. Deploy HA Proxy LoadBalancer

• Provision a VM
• Install HAProxy using package

manager
▪ apt install haproxy –y

• Restart HAProxy service after
modifying the configuration
▪ systemctl stop haproxy
▪ add configuration to

/etc/haproxy/haproxy.cfg
▪ systemctl start haproxy &&

systemctl enable haproxy

/etc/haproxy/haproxy.cfg10.11.3.5

Kubernetes

C:\Windows\System32\drivers\etc\hosts
192.168.0.105 connected-city.com
192.168.0.105 connected-factory.com
ipconfig /flushdns

windows

/etc/hosts
192.168.0.105 flask-app.com

linux

Demo: Ingress

5. Update dummy DNS entries

Both DNS names to point to IP of HAProxy server
HAProxy

connected-city.com

connected-factory.com

10.11.3.5

Kubernetes
Demo: Ingress

connected-factory.comconnected-city.com

6. Access Application through URLs

Kubernetes
Ingress using Network LB

Kubernetes

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://devblogs.microsoft.com/premier-developer/bypassing-authentication-for-the-local-kubernetes-cluster-dashboard/

Dashboard

• Default login access to dashboard is by using token or kubeconfig file. This can be bypassed for internal testing
but not recommended in production

• Uses NodePort to expose the dashboard outside the Kubernetes cluster
• Change the service to ClusterIP and use it in conjunction with ingress resources to make it accessible through a

DNS name(similar to previous demos)

https://github.com/kunchalavikram1427/kubernet
es/blob/master/dashboard/insecure-dashboard-
nodeport.yaml

Kubernetes

Volumes
• By default, container data is stored inside own its file system
• Containers are ephemeral in nature. When they are destroyed, the data inside them gets deleted
• Also when running multiple containers in a Pod it is often necessary to share files between those

Containers
• In order to persist data beyond the lifecycle of pod, Kubernetes provide volumes
• A volume can be thought of as a directory which is accessible to the containers in a pod
• The medium backing a volume and its contents are determined by the volume type

Types of Kubernetes Volumes
• There are different types of volumes you can use in a Kubernetes pod:

❑ Node-local memory (emptyDir and hostPath)
❑ Cloud volumes (e.g., awsElasticBlockStore, gcePersistentDisk, and azureDiskVolume)
❑ File-sharing volumes, such as Network File System (NFS)
❑ Distributed-file systems (e.g., CephFS and GlusterFS)
❑ Special volume types such as PersistentVolumeClaim, secret, configmap and gitRepo

10.244.0.22

Pod

containers

Kubernetes

emptyDir

• emptyDir volume is first created when a Pod is assigned to a
Node

• It is initially empty and has same lifetime of a pod
• emptyDir volumes are stored on whatever medium is backing

the node - that might be disk or SSD or network storage or
RAM

• Containers in the Pod can all read and write the same files in
the emptyDir volume

• This volume can be mounted at the same or different paths in
each Container

• When a Pod is removed from a node for any reason, the data
in the emptyDir is deleted forever

• Mainly used to store cache or temporary data to be processed
10.244.0.22

container 1

container 2

emptyDir

Kubernetes

emptyDir

apiVersion: v1
kind: Pod
metadata:

name: emptydir-pod
labels:
app: busybox
purpose: emptydir-demo

spec:
volumes:
- name: cache-volume
emptyDir: {}

containers:
- name: container-1
image: busybox
command: ["/bin/sh","-c"]
args: ["date >> /cache/date.txt; sleep 1000"]
volumeMounts:
- mountPath: /cache

name: cache-volume
- name: container-2
image: busybox
command: ["/bin/sh","-c"]
args: ["cat /cache/date.txt; sleep 1000"]
volumeMounts:
- mountPath: /cache

name: cache-volume

kubectl apply -f emptyDir-demo.yml

kubectl exec -it pod/emptydir-pod -c container-2 -- cat /cache/date.txt
kubectl logs pod/emptydir-pod -c container-2

Kubernetes

hostPath

• This type of volume mounts a file or directory from the host
node’s filesystem into your pod

• hostPath directory refers to directory created on Node where
pod is running

• Use it with caution because when pods are scheduled on
multiple nodes, each nodes get its own hostPath storage
volume. These may not be in sync with each other and
different pods might be using a different data

• Let’s say the pod with hostPath configuration is deployed on
Worker node 2. Then host refers to worker node 2. So any
hostPath location mentioned in manifest file refers to worker
node 2 only

• When node becomes unstable, the pods might fail to access
the hostPath directory and eventually gets terminated

container 2

/data

10.244.0.22

container 1

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

Kubernetes Node

Kubernetes cluster

Kubernetes

hostPath
apiVersion: v1
kind: Pod
metadata:

name: hostpath-pod
spec:

volumes:
- name: hostpath-volume

hostPath:
path: /data
type: DirectoryOrCreate

containers:
- name: container-1

image: busybox
command: ["/bin/sh","-c"]
args: ["ls /cache ; sleep 1000"]
volumeMounts:
- mountPath: /cache

name: hostpath-volume

kubectl apply -f hostPath-demo.yml

kubectl logs pod/hostpath-pod -c container-1
kubectl exec -it pod/hostpath-pod -c container-1 -- ls /cache

Kubernetes

Persistent Volume and Persistent Volume Claim
• Managing storage is a distinct problem inside a cluster. You cannot rely on emptyDir or hostPath for

persistent data.
• Also providing a cloud volume like EBS, AzureDisk often tends to be complex because of complex

configuration options to be followed for each service provider
• To overcome this, PersistentVolume subsystem provides an API for users and administrators that

abstracts details of how storage is provided from how it is consumed. To do this, K8s offers two API
resources: PersistentVolume and PersistentVolumeClaim.

Kubernetes

Persistent Volume and Persistent Volume Claim

• A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned using Storage Classes(pre-defined provisioners and
parameters to create a Persistent Volume)

• Admin creates a pool of PVs for the users to choose from
• It is a cluster-wide resource used to store/persist data beyond the lifetime of a pod
• PV is not backed by locally-attached storage on a worker node but by networked storage system such

as Cloud providers storage or NFS or a distributed filesystem like Ceph or GlusterFS
• Persistent Volumes provide a file system that can be mounted to the cluster, without being associated

with any particular node

Persistent volume (PV)

Kubernetes

Persistent Volume and Persistent Volume Claim

• In order to use a PV, user need to first claim it using a PVC
• PVC requests a PV with the desired specification (size, speed, etc.) from Kubernetes and then binds it to a

resource(pod, deployment…) as a volume mount
• User doesn’t need to know the underlying provisioning. The claims must be created in the same namespace

where the pod is created.

https://www.learnitguide.net/2020/03/kubernetes-persistent-volumes-and-claims.html

Persistent Volume Claim (PVC)

Kubernetes

Persistent Volume and Persistent Volume Claim

https://www.learnitguide.net/2020/03/kubernetes-persistent-volumes-and-claims.html

Kubernetes
Using PVCs

Deployments

Kubernetes Cluster

Kubernetes
Using PVCs in GKE

https://medium.com/google-cloud/introduction-to-docker-and-kubernetes-on-gcp-with-hands-on-configuration-part-3-kubernetes-with-eb41f5fc18ae

Kubernetes

Logs

kubectl logs my-pod # dump pod logs (stdout)
kubectl logs -l name=myLabel # dump pod logs, with label name=myLabel (stdout)
kubectl logs my-pod -c my-container # dump pod container logs (stdout, multi-container case)
kubectl logs -l name=myLabel -c my-container # dump pod logs, with label name=myLabel (stdout)
kubectl logs -f my-pod # stream pod logs (stdout)
kubectl logs -f my-pod -c my-container # stream pod container logs (stdout, multi-container case)
kubectl logs -f -l name=myLabel --all-containers # stream all pods logs with label name=myLabel (stdout)
kubectl logs my-pod -f --tail=1 # stream last line of pod logs
kubectl logs deploy/<deployment-name> # dump deployment logs

Kubernetes

Interaction with pods

kubectl run -i --tty busybox --image=busybox -- sh # Run pod as interactive shell

kubectl run nginx –it --image=nginx -- bash # Run pod nginx

kubectl run nginx --image=nginx --dry-run -o yaml > pod.yaml # Run pod nginx and write its spec into a file called
pod.yaml

kubectl attach my-pod -i # Attach to Running Container

kubectl exec my-pod -- ls / # Run command in existing pod (1 container case)

kubectl exec my-pod -c my-container -- ls / # Run command in existing pod (multi-container case)

Scheduling

Kubernetes

Scheduling
• Kubernetes users normally don’t need to choose a node to which their Pods should be scheduled
• Instead, the selection of the appropriate node(s) is automatically handled by the Kubernetes scheduler
• Automatic node selection prevents users from selecting unhealthy nodes or nodes with a shortage of

resources
• However, sometimes manual scheduling is needed to ensure that certain pods only scheduled on nodes

with specialized hardware like SSD storages, or to co-locate services that communicate
frequently(availability zones), or to dedicate a set of nodes to a particular set of users

• Kubernetes offers several ways to manual schedule the pods. In all the cases, the recommended
approach is to use label selectors to make the selection

• Manual scheduling options include:

1. nodeName
2. nodeSelector
3. Node affinity
4. Taints and Tolerations

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Kubernetes
Scheduling

• nodeName is a field of PodSpec
• nodeName is the simplest form of node selection constraint, but due to its limitations it is typically not

used
• When scheduler finds no nodeName property, it automatically adds this and assigns the pod to any

available node
• Manually assign a pod to a node by writing the nodeName property with the desired node name.
• We can also schedule pods on Master by this method
• Some of the limitations of using nodeName to select nodes are:

▪ If the named node does not exist, the pod will not be run, and in some cases may be
automatically deleted

▪ If the named node does not have the resources to accommodate the pod, the pod will fail and its
reason will indicate why, for example OutOfmemory or OutOfcpu

▪ Node names in cloud environments are not always predictable or stable

nodeName

Kubernetes
Scheduling
nodeName

apiVersion: v1
kind: Pod
metadata:

name: nginx
spec:

containers:
- name: nginx

image: nginx
ports:
- containerPort: 80

nodeName: k8s-master

nodeName.yml

kubectl apply –f nodeName.yml

Kubernetes
Scheduling

• nodeSelector is a field of PodSpec
• It is the simplest recommended form of node selection constraint
• It uses labels(key-value pairs) to select matching nodes onto which

pods can be scheduled
• Disadvantage with nodeSelector is it uses hard preferences i.e., if

matching nodes are not available pods remain in pending state!

nodeSelector

check default node labels

kubectl describe node <node-name>

Kubernetes
Scheduling
nodeSelector

Add labels to nodes

kubectl label nodes <node-name> <label-key>=<label-value>
kubectl label nodes k8s-slave01 environment=dev

delete a label: kubectl label node <nodename> <labelname> -

Kubernetes
Scheduling
nodeSelector

apiVersion: v1
kind: Pod
metadata:

name: nginx
labels:

env: test
spec:

containers:
- name: nginx

image: nginx
nodeSelector:

environment: dev

nodeSelector.yml

kubectl apply –f nodeSelector.yml
kubectl get pods –o wide --show-labels
kubectl describe pod <pod-name>

Kubernetes
Scheduling
nodeAffinity

• Node affinity is specified as field nodeAffinity in PodSpec
• Node affinity is conceptually similar to nodeSelector – it allows you to manually schedule pods

based on labels on the node. But it has few key enhancements:
• nodeAffinity implementation is more expressive. The language offers more matching rules

besides exact matches created with a logical AND operation in nodeSelector
• Rules are soft preferences rather than hard requirements, so if the scheduler can’t find a

node with matching labels, the pod will still be scheduled on other nodes

There are currently two types of node affinity rules:
1. requiredDuringSchedulingIgnoredDuringExecution: Hard requirement like nodeSelector. No

matching node label, no pod scheduling!
2. preferredDuringSchedulingIgnoredDuringExecution: Soft requirement. No matching node label, pod

gets scheduled on other nodes!
The IgnoredDuringExecution part indicates that if labels on a node change at runtime such that the
affinity rules on a pod are no longer met, the pod will still continue to run on the node.

Kubernetes
Scheduling
nodeAffinity

apiVersion: v1
kind: Pod
metadata:

name: with-node-affinity
spec:

affinity:
nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

- key: environment
operator: In
values:
- prod

containers:
- name: nginx-container

image: nginx

nodeAffinity.yml

kubectl apply –f nodeAffinity.yml

• Pod gets scheduled on the node has the label
environment=production

• If none of the nodes has this label, pod remains
in pending state.

• To avoid this, use affinity
preferredDuringSchedulingIgnoredDuringExecu
tion

Kubernetes
Scheduling
Taints and Tolerations

• Node affinity, is a property of Pods that attracts them to a set of nodes (either as a preference or a
hard requirement)

• Taints are the opposite – they allow a node to repel a set of pods.
• Taints are applied to nodes(lock)
• Tolerations are applied to pods(keys)
• In short, pod should tolerate node’s taint in order to run in it. It’s like having a correct key with pod to

unlock the node to enter it
• Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate nodes

K8s Node

Pod

Kubernetes
Scheduling
Taints and Tolerations

• By default, Master node is tainted. So you cannot deploy any pods on Master
• To check taints applied on any node use kubectl describe node <node-name>

• taint’s key and value can be any arbitrary string
• taint effect should be one of the supported taint effects such as

1. NoSchedule: no pod will be able to schedule onto node unless it has a matching
toleration.

2. PreferNoSchedule: soft version of NoSchedule. The system will try to avoid placing a
pod that does not tolerate the taint on the node, but it is not required

3. NoExecute: node controller will immediately evict all Pods without the matching
toleration from the node, and new pods will not be scheduled onto the node

kubectl taint nodes <node-name> key=value:<taint-effect>

Apply taint to nodes

Kubernetes
Scheduling
Taints and Tolerations

kubectl taint nodes k8s-slave01 env=stag:NoSchedule

Apply taint to nodes

• In the above case, node k8s-slave01 is tained with label env=stag and taint effect as
NoSchedule. Only pods that matches this taint will be scheduled onto this node

kubectl describe node k8s-slave01 | grep -i taint

Check taints on nodes

Kubernetes
Scheduling
Taints and Tolerations

kubectl apply –f taint_toleration.yml
kubectl get pods –o wide

Apply tolerations to pods

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
spec:

replicas: 3
selector:
matchLabels:

app: myapp
template:
metadata:

name: myapp-pod
labels:
app: myapp

spec:
containers:
- name: nginx-container
image: nginx

tolerations:
- key: "env"
operator: "Equal"
value: "stag"
effect: "NoSchedule“

taint_toleration.yml

• Here pods are scheduled onto both the slave nodes.
• Only slave01 is tainted here and matching tolerations are added

to pods. So pods are scheduled onto slave-01 as well.
• If we remove the tolerations from the pods and deploy them,

they will get scheduled onto slave-02 only as slave01 is tainted
and matching toleration is removed/not available with pods!

References
• Docker Installation on Ubuntu

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
• K3s Installation

https://k33g.gitlab.io/articles/2020-02-21-K3S-01-CLUSTER.html
https://medium.com/better-programming/local-k3s-cluster-made-easy-with-multipass-108bf6ce577c

• Kubernetes 101
https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-and-clusters-c1509e409e16
https://jamesdefabia.github.io/docs/user-guide/kubectl/kubectl_run/

• Kubeadm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

• k3s
https://rancher.com/docs/

• Kubectl commands
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/overview/

• Deployments
https://www.bmc.com/blogs/kubernetes-deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

• Services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://www.edureka.co/community/19351/clusterip-nodeport-loadbalancer-different-from-each-other
https://theithollow.com/2019/02/05/kubernetes-service-publishing/
https://www.ovh.com/blog/getting-external-traffic-into-kubernetes-clusterip-nodeport-loadbalancer-and-ingress/
https://medium.com/@JockDaRock/metalloadbalancer-kubernetes-on-prem-baremetal-loadbalancing-101455c3ed48
https://medium.com/@cashisclay/kubernetes-ingress-82aa960f658e

• Ingress
https://www.youtube.com/watch?v=QUfn0EDMmtY&list=PLVSHGLlFuAh89j0mcWZnVhfYgvMmGI0lF&index=18&t=0s

• K8s Dashboard
https://github.com/kubernetes/dashboard
https://github.com/indeedeng/k8dash

• YAML
https://kubeyaml.com/

